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Évariste Galois was one of the greatest mathematicians of all times. The outlines of his
short, tragic life are well known (at least to mathematicians). He was born on October 25,
1811 in the village of Bourg-la-Reine on the outskirts of Paris. He died in a duel on May 31,
1832 at the age of twenty. His monumental contributions to mathematics were developed
between the ages of sixteen and twenty. It is not my intention to review his life’s story. A
short overview can be obtained from the entry “Évariste Galois” at Wikipedia.com. For a
fuller version see Leopold Infeld, Whom the Gods Love: The Story of Evariste Galois, or
the more recent and scholarly account of Laura Toti Rigatelli, Evariste Galois.

Instead of going over the details of his life, I wish to illustrate the beauty of the
mathematical ideas he developed by proving in some detail one of his brilliant, but little
known theorems. It is my hope that the beauty, originality, and depth of his contributions
will shine forth.

Before beginning, let me recall two of his papers. The first, entitled Sur la théorie des

nombres, was published in 1830. Here he develops in systematic fashion the theory of finite
fields. This was the first time the theory had appeared in print. For many years, in his
honor, the name “Galois field” was used instead of “finite field”. The whole presentation
of the subject in his memoire is remarkably modern.

The second paper I want to call to your attention is Memoire sur les conditions de res-

olubilité des equations par radicaux. In this paper he lays out the foundations of the theory
which now bears his name. Although submitted three times it did not appear in his lifetime.
Twice it was lost and once it was rejected. Years later, at the urging of Galois’ friends,
the eminent mathematician Liouville found and read the neglected manuscript. Finding
the work entirely sound, he published it in his famous journal, Journal de Mathématique
Pure et Appliquées. This was in 1846, fourteen years after Galois’ death. Once published
the mathematical world took little time to recognize its worth. The repercussions and
developments of Galois’ theory continue to this day.

For a translation and detailed discussion of this memoir (and much else) see the book
of Harold M. Edwards, Galois Theory.

Galois associates a finite group of permutations Gf to a polynomial equation f(x) = 0.
He shows that the equation is solvable in radicals if and only if Gf is a solvable group. It
should be noted that before Galois even the notion of a normal subgroup of a group was
not known. He defined it and also defined what it means for a group of permutations to
be solvable. A subgroup H of a group G is normal, according to Galois, if its set of left
cosets is equal to its set of right cosets. This is easily seen to be equivalent to the usual
definition. He calls a finite group solvable if and only if there exists a series of subgroups

(e) ⊂ G1 ⊂ G2 ⊂ . . . ⊂ Gt−1 ⊂ Gt = G ,

where each Gi is a normal subgroup of Gi+1 and for all i, [Gi+1 : Gi] is prime. Note that
this definition avoids talking about quotient groups. The notion of a quotient group does
not seem to occur in Galois’ works.
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As an application of his general theory, Galois states the following, which is the last
theorem in his memoir.

Theorem A. In order for an irreducible equation of prime degree to be solvable in radicals,

it is necessary and sufficient that once any two roots are known, the others can be deduced

from them rationally.

This result is not as well known as it deserves to be. My main purpose is to present
the proof and an application. For clarity, I will use modern notation and ways of doing
Galois theory. However, I will attempt to avoid using any tools that were unavailable to
Galois.

Let f(x) ∈ k[x], where k is a field of characteristic zero. We assume that f(x) has
no repeated factors. Suppose that α1, α2, . . . , αn are the roots of f(x) in some extension
field of k. Set L = k(α1, α2, . . . , αn). Then, L/k is a Galois extension. Let G = Gal(L/k)
be its Galois group. G acts on the set of roots, i.e. if σ ∈ G then σαi = απ(i) where
π ∈ Sn, the symmetric group on n letters. The map ρ : G → Sn which takes σ to π is
a monomorphism. The image of ρ, Gf ⊆ Sn, is what Galois calls the group attached to
f(x). Note that f(x) is irreducible if and only if Gf is a transitive subgroup of Sn.

Here is a reformulation of Theorem A.

Theorem B. Suppose f(x) is irreducible of prime degree p. Then, f(x) = 0 is solvable in

radicals if and only if for all 1 ≤ i, j ≤ p with i 6= j, we have k(α1, α2, . . . , αp) = k(αi, αj).

Using Galois theory we can easily translate this into a statement about groups.

Theorem C. Let p be a prime, and G ⊆ Sp a transitive subgroup. Then, G is solvable

if and only if the only element of G which has two or more fixed points is e, the identity

permutation.

We now proceed to the proof of Theorem C.

Proposition 1. Suppose G ⊆ Sn is transitive. Let N be a normal subgroup of G. All

the orbits of N have the same number of elements, m say. The number m divides n.

Proof. Let i be an integer between 1 and n and Hi the isotropy subgroup of i in G. The
number of elements in the N orbit of i is [N : N ∩ Hi]. Let j be another integer between
1 and n. Since G is transitive, there is a σ ∈ G such that σ(i) = j. One easily sees that
Hj = σHiσ

−1. Since N is normal, it follows that N ∩ Hi is conjugate to N ∩ Hj , from
which it follows that the N orbit of i has the same number of elements as the N orbit of
j.

Since {1, 2, . . . , n} is the disjoint union of the orbits of N each of which has m elements,
we see that m divides n.

Corollary. Suppose that n = p, a prime, and that N is not (e). Then, N acts transitively.

Proof. The number m of elements in an N orbit must be bigger than 1. Otherwise,
every element of N fixes every integer between 1 and p, i.e. N = (e). By the Proposition,
m divides p implying m = p. Thus, N is transitive.
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Proposition 2. Suppose p is a prime and G ⊆ Sp is transitive and solvable. By definition,

there is a tower of subgroups Gi, i = 0, 1, . . . , t , such that G0 = (e), Gi normal in Gi+1,

[Gi+1 : Gi] = pi, a prime, and Gt = G. We must have p1 = p, i.e. G1 is a cyclic subgroup

of order p.

Proof. Since Gt−1 6= (e) is normal in G, and G is transitive, it follows from the above
Corollary that Gt−1 is transitive. Since Gt−1 is transitive and Gt−2 6= (e) is normal in
Gt−1, it follows that Gt−2 is transitive. Proceeding inductively down the tower we find
that G1 is transitive. Since G1 is transitive, its order p1 is divisible by p. Thus p1 = p.

Let τ ′ be a generator of G1. Since τ ′ has order p it must be a p-cycle. Conjugating G
if necessary by an element of Sp, we can assume that τ ′ = (1, 2, 3, . . . , p).

At this point Galois makes use of a very clever idea. Instead of the set {1, 2, . . . , p},
he lets the set being acted on be {0̄, 1̄, . . . , p − 1} = Z/pZ. This has a group structure!
Our cycle (1, 2, 3, . . . , p) becomes the translation τ(x) = x + 1̄. From now on we drop the
bars and write {0, 1, . . . , p − 1} = Z/pZ and allow modular arithmetic modulo p. Galois
introduces the group A(1, p) of affine transformations x → ax + b, where a ∈ (Z/pZ)∗ and
b ∈ Z/pZ. This is a group of order p(p − 1). There are two important subgroups; the
subgroup of translations x → x + b and the subgroup of dilations x → ax of orders p and
p − 1 respectively. The subgroup of translations is the cyclic group generated by τ which
we denote by < τ >. It will play a major role.

Lemma. Every element of A(1, p) not in < τ > has order dividing p − 1.

Proof. Here is a sharper form of the Lemma. Let T (x) = ax + b with a 6= 1. Then, the
order of T in A(1, p) is equal to the order of a in (Z/pZ)∗. We leave this as an exercise for
the reader.

Corollary. < τ > is a normal subgroup of A(1, p).

Proof. For any σ ∈ A(1, p) we have στσ−1 has order p which implies, by the Lemma,
that στσ−1 ∈< τ >.

Proposition 3. If λ ∈ Sp and λτλ−1 ∈ A(1, p), then λ ∈ A(1, p).

Proof. Since λτλ−1 has order p, it must be in < τ > by the above Lemma. Thus,
λτλ−1 = τa for some a ∈ (Z/pZ)∗. From λτ = τaλ we find λ(x + 1) = λ(x) + a. By an
obvious induction, we find λ(x + r) = λ(x) + ar for all r ∈ Z/pZ. Set x = 0 and we find
λ(r) = ar + λ(0). This shows that λ ∈ A(1, p).

We are now in a position to prove Theorem C. We break the proof up into two parts
corresponding to the “if and only if” parts of the statement.

Proof of Theorem C, Part 1

We will assume G is solvable and show G is conjugate within Sp to a subgroup of
A(1, p). We will deduce the fixed point property from this.

Since G is solvable, we have a normal series

(e) ⊂ G1 ⊂ G2 ⊂ . . . ⊂ Gt−1 ⊂ Gt = G .
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By assumption, Gi is normal in Gi+1 and [Gi+1 : Gi] is prime. By Proposition 2 and
the folllowing remarks, we can assume G1 =< τ > where τ(x) = x + 1. If λ ∈ G2, we
have λτλ−1 ∈ G1 =< τ > since G1 is normal in G2. This shows that λτλ−1 ∈ A(1, p)
so by Proposition 3, λ ∈ A(1, p). It follows that G2 ⊆ A(1, p). Now, let λ ∈ G3. Then,
λτλ−1 ∈ G2 since τ ∈ G2 and G2 is normal in G3. Thus, λτλ−1 ∈ A(1, p) and, again
invoking Proposition 3, we see that λ ∈ A(1, p). Since this is true for all λ ∈ G3 it follows
that G3 ⊆ A(1, p). Proceeding in this manner up the chain we deduce that G ⊆ A(1, p).

We now show that the only element of G with two or more fixed points is the identity
e. Let σ ∈ G. Since G ⊆ A(1, p), we see σ(x) = ax + b for suitable a and b. Suppose i 6= j
and both i and j are fixed points of σ. Then, ai + b = i and aj + b = j. Subtracting these
equations yields a(i − j) = i − j. It follows that a = 1 and b = 0. This shows σ = e, as
asserted.

Proof of Theorem C, Part 2

We now suppose that G ⊂ Sp is transitive and has the property that the only element
in G with two or more fixed points is e, the identity. We will show that these properties
imply that G is solvable.

In the proof we need the fact that A(1, p) is solvable. From a modern point of view
this is clear since < τ > is a cyclic normal subgroup with cyclic quotient group. However,
Galois did not seem to have the idea of a quotient group, so here is a sketch of a proof
that does not use this notion. Let T and D denote the subgroups of A(1, p) of translations
and dilations respectively. T is cyclic of order p and D is cyclic of order p − 1. Since T
is a normal subgroup (see the Corollary to the Lemma) it follows that A(1,p) is the semi-
direct product of T and D. Since D is cyclic, one easily constructs a series of subgroups
(e) ⊂ D1 ⊂ D2 ⊂ . . . ⊂ Dm−1 ⊂ Dm = D where for all i, [Di+1 : Di] is prime. Then,

(e) ⊂ T ⊂ D1T ⊂ D2T ⊂ . . . ⊂ Dm−1T ⊂ DmT = A(1, p) .

is a normal series with the index at each step being a prime number. This shows A(1, p)
is solvable.

Since G is transitive, its order is divisible by p and it follows that G contains a p-cycle.
By conjugating G be a suitable element of Sp we can assume the p-cycle is (1, 2, 3, . . . , p).
Then, changing the notation as in the discussion after Proposition 2, we can assume τ ∈ G
where τ(x) = x + 1. We will show that all the elements in G of order p are in < τ >.
Let’s assume for the moment that this has been done. It follows that < τ > is a normal
subgroup of G. Then, for all λ ∈ G we have λτλ−1 ∈< τ >⊂ A(1, p). By Proposition 3,
λ ∈ A(1, p). It follows that G ⊆ A(1, p) and since we have shown A(1, p) is solvable, it
follows that G is solvable.

One can invoke the Sylow theorems in order to show < τ > contains all the elements
on G of order p. These theorems had not yet been discovered during Galois lifetime, so we
prefer to give a proof which does not use them.

Let S be the set of pairs (k, l) where 0 ≤ k, l ≤ p − 1 and k 6= l. This set has
p(p − 1) elements. Let (i, j) ∈ S and map G into S by sending σ to (σ(i), σ(j)). If
(σ(i), σ(j)) = (ρ(i), ρ(j)), then ρ−1σ has two fixed points, namely i and j. By assumption,
this implies ρ−1σ = e, i.e. ρ = σ. This shows our map is one to one, so |G| ≤ p(p − 1).
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Now, suppose there is a θ ∈ G of order p which is not in < τ >. Then,
< θ > ∩ < τ >= (e) and it follows that < θ >< τ > has p2 elements. This cannot
happen since |G| ≤ p(p − 1). The proof is complete.

Here is a useful theorem of Kronecker which he proved without knowing the result of
Galois that we have just proved.

Theorem. Let f(x) ∈ Q[x] be irreducible and solvable of prime degree. If f(x) = 0 has

two real roots, then all of its roots are real.

This is immediate from Theorem B, since of αi and αj are real, then every element of
the field Q(αi, αj) is real. Thus, all the roots are real.

As a concrete application, consider the integral polynomial f(x) = xq−apx−p ∈ Z[x].
Assume a ≥ 2 and that q and p are both positive primes with q ≥ 5. By the Eisenstein
criterion, f(x) is irreducible. Using calculus to plot its graph one easily shows there are
exactly three real roots. By Kronecker’s result, we see that the Galois group of this
polynomial is not solvable.

The night before he was mortally wounded in a duel, Galois wrote a long letter to
his friend Auguste Chevalier in which he outlines his ideas and to which he attached three
manuscripts. About this letter Hermann Weyl commented, “This letter, if judged by the
novelty and profundity of the ideas it contained, is perhaps the most substantial piece of
writing in the whole literature of mankind”. This may or may not strike us as exaggerated,
but it certainly shows the immense respect held by one of the greatest mathematicians of
the twentieth century for the young genius Évariste Galois whose bicentennial we celebrate
this year. His life was tragically short, but his influence only increases as time goes by.
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