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Abstract

This is a note for my talk Whims on Tournaments. This is also a presentation of one of my miserably
failed but still interesting exploration starting from my sophomore year, when I first leant what a group
is. The failure is that all results I worked out have already been worked out by someone else. I call my
subject Directed Set, where the official name is Tournament. Here I invite you to walk along my failure
from definition of a Directed Set to my two partition theorems and to some other explorations. If time
permits, we might even do the King Chicken Theorem, both the original one and the one on compact
Hausdorff space. I hope you have as much fun as I had.
Prerequisite: Knowing the definition of group and homomorphism is enough to enjoy most of this talk.
Some basic knowledge in topology will let you enjoy the last part.

1 Introduction

The whim starts with a naive imitation about the definition of groups.

Definition 1.1. A directed set (D,∧) is a set D with a commutative binary operation ∧ such that ∀a, b ∈ D,
either a ∧ b = a or a ∧ b = b.

Then recall a whole bunch of definitions about relations.

Definition 1.2. A relation ∼ on a set S is a subset of S ×S, the set of all ordered pairs of elements of S.
We write a ∼ b iff (a, b) ∈∼. We also have the following terminology:

1. It is symmetric if ∀a, b ∈ S, a ∼ b iff b ∼ a.

2. It is anti-symmetric if ∀a, b ∈ S, a ∼ b and b ∼ a implies a = b.

3. It is total if ∀a, b ∈ S, either a ∼ b or b ∼ a.

4. It is transitive if ∀a, b, c ∈ S, a ∼ b and b ∼ c imply a ∼ c.

5. It is reflexive if ∀a ∈ S, a ∼ a.

Definition 1.3. We have the following types of relations:

1. An equivalence relation is a reflexive, symmetric and transitive relation.

2. A partial order is an antisymmetric and transitive relation.

3. A total order is a total, antisymmetric and transitive relation.

So what if we scratch the transitivity from the definition, and define a ”vague order” like this:

Definition 1.4. A relation ∼ on a set S is called a vague order if it is total and antisymmetric.

I claim that the notion of ”directed set” and ”set with a vague order” are actually equivalent.
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Proposition 1.5. If a set V is a set with a vague order, then it is naturally a directed set. If D is a directed
set, then it has a natural vague order.

Proof. Let V be a set with vague order ∼. Then we define a binary operation ∧ such that ∀a, b ∈ V , a∧b = b
iff a ∼ b, and a ∧ b = a iff b ∼ a.

Then ∀a, b, if a = b, then clearly a ∼ a as ∼ is total. Then a ∧ a = a. If a 6= b, and a ∼ b, then we know
by antisymmetry b � a. Then a ∧ b = b, and b ∧ a = b. The case when a 6= b, b ∼ a and a � b is exactly the
same.

Now let D be a directed set. Then we define a relation ∼ such that a ∼ b if and only if a ∧ b = b. Then
∀a, b ∈ D, if a = b, then a ∧ a = a, so a ∼ a. If a 6= b and a ∧ b = b ∧ a = b, then a ∼ b and b � a. If a 6= b
and a ∧ b = b ∧ a = a, then b ∼ a and a � b. So ∼ is a vague order.

Note that the notion of a ”directed set” is also the same as the notion of a tournament, which is a set of
point such that between any two points, there is an arrow pointing towards one of the two points. So in the
future we could write a→ b for a ∼ b or a ∧ b = b.

So now we define a directed set (D,∧) in a similar way we define a group. Clearly (D,∧) is hard to be a
group, given that a∧ b = a or b ∀a, b ∈ D. However, let us at least figure out when is (D,∧) a seimgroup or
a monoid.

Definition 1.6. Here are some algebraic structure related to groups:

1. A semigroup (G, ·) is a set G with a binary associative operation.

2. A monoid is a semigroup with identity.

3. A group is a monoid where every element has an inverse.

Proposition 1.7. In a directed set (D,∧), the operation ∧ is associative iff the corresponding vague order
is transitive. As a result, (D,∧) is a semigroup iff the corresponding vague order is a total order.

Proof. ∀a, b, c ∈ D, if ∧ is associative, then (a ∧ b) ∧ c = a ∧ (b ∧ c). Then if a → b and b → c, then
(a ∧ b) ∧ c = b ∧ c = c, and a ∧ (b ∧ c) = a ∧ c, so a → c, the vague order is transitive. On the other hand,
suppose the vague order is transitive, ∀a, b, c ∈ D. If b→ c and b→ a, then (a∧ b)∧ c = a∧ c = a∧ (b∧ c). If
c→ b and a→ b, then (a∧b)∧c = b∧c = b = a∧b = a∧(b∧c). If a→ b→ c, then (a∧b)∧c = b∧c = (a∧b)∧c.
If a← b← c, then (a ∧ b) ∧ c = a ∧ c = a ∧ (b ∧ c).

Remark 1.8. A directed set is a monoid iff the corresponding vague order is a total order and has a initial
element.

2 Two Partition Theorems

The case of a total order or even a partial order is not what I am interested in. There are super interesting
”order theory” and ”lattice theory” about them. But I am more interesting when the transitivity breaks
down. This means if we have a→ b and b→ c, then we also have c→ a. These three elements form a sort
of cycle.

Definition 2.1. In a directed set D, a cycle (ai)i∈Z/nZ is a collection of elements in D such that ∀i ∈
Z/nZ, ai → ai+1. A path [a1, ..., an] is a collection of elements in D such that ∀i ∈ {1, ..., n− 1}, ai → ai+1.
A cycle or a path is said to be simple if all ai’s are distinct. Two elements a, b of D is said to be cycle-
connected if they are contained in the same cycle. A cycle-connected component C of D is a maximal
cycle-connected subset of D, i.e. if x is cycle-connected to some y ∈ C, then x ∈ C as well.

Theorem 2.2 (The First Partition Theorem or The Hamiltonian Decomposition). Any directed set has a
partition into cycle-connected components. There is an induced total order on these components. And in
every finite cycle-connected component there is a simple cycle going through all elements of the component.
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Proof. It’s enough to show that ”cycle-connected” is an equivalence relation on any directed set D. This is
trivially reflexive and symmetric, so we only need to prove transitivity. If a, b are in a cycle (b, a1, ..., an) where
a = ai for some i, and b, c are in a cycle (b, c1, ..., cn) where c = ci for some i. Then (a1, ..., an, b, c1, ..., cn, b)
is a cycle containing a, b and c, so a, c are cycle-connected. This proves the first statement.

Now let C be the set of these components, and ∀A,B ∈ C, we say A → B iff ∃a ∈ A, b ∈ B, a → b. I
claim that this ”→” is a total order. ∀A,B ∈ C, pick a ∈ A, b ∈ B, and WLOG assume a→ b. And suppose
∃a′ ∈ A, b′ ∈ B such that b′ → a′. Then as a, a′ are in a cycle (a, c1, ..., cs, a

′, d1, ..., dt), b, b
′ are in a cycle

(b, e1, ..., ek, b
′, f1, ..., f`), therefore we have a cycle (a, b, e1, ..., ek, b

′, a′, d1, ..., dt). So a, b are cycle-connected,
so A = B. So clearly ”→” is antisymmetric. It is also trivially total. Transitivity can be proved similar to
antisymmetry.

We are going to prove the last statement by induction. Let (a1, ..., an) be a simple cycle, and let b be
some element in the component not in the cycle. Then if ai → b → aj for some i, j, then ∃t such that
at → b → at+1, then (a1, ..., at, b, at+1, ..., an) is a simple cycle. The same for ai ← b ← aj . So we can
WLOG assume ai → b for all i. Then pick any ai, it is cycle-connected to b in a cycle (b, c1, ..., cm) where ai
is some cj . From c1 to cn, WLOG let the first appeared element of {a1, ..., an} be a1 = ct for some t. Then
(b, c1, ..., ct = a1, ..., an) is the desired simple cycle. To sum up, we can keep expanding the simple cycle until
it includes all elements.

Corollary 2.3. Every tournament has a Hamiltonian path. A tournament is Hamiltonian iff it is strongly
connected. (Here tournament is just a directed set, and Hamiltoniam path or cycle is a simple path or cycle
going through all elements. A tournament with a Hamiltonian cycle is called hamiltonian. A tournament
with only one cycle component is called strongly connected.)

Remark 2.4. There are several related problems:

1. How many Hamiltonian path are there in a given tournament? (Always odd number)

2. Given a strongly connected tournament, how many Hamiltonian cycle are there? (Open)

3. Rosenfeld’s Conjecture: For n ≥ 8, every orientation of an n-vertex path graph can be embedded into
every n-vertex tournament. (Havet & Thomassé, 2000)

4. Sumner’s Conjecture: Every orientation of an n-vertex tree is a subgraph of every (2n − 2)-vertex
tournament. (Open)

Now recall the definition of homomorphism for groups. Immediately we have:

Definition 2.5. Given two directed set D,E, a homomorphism is a map f : D → E such that f(a∧ b) =
f(a) ∧ f(b) for all a, b ∈ D. This is called an embedding if f is injective. This is called a collapsing if f
is surjective.

Then naturally we seek to define a kernel for f . However, a directed set does not necesarrily have any
identity. So what we only have are fibers, i.e. preimages of single points.

Definition 2.6. In a directed set D, I ⊂ D is called an ideal iff ∀x ∈ D \ I, either x→ y ∀y ∈ I, or x← y
∀y ∈ I. Or simply put, elements of I behave the same way with respect to every other point in D.

Proposition 2.7. In a directed set D, I ⊂ D is an ideal iff it is a fiber of some homomorphism.

Proof. Let I be a fiber of the homomorphism f : D → E, say I = f−1(a). Then ∀x ∈ D \ I, WLOG let
f(x)→ a. Then ∀y ∈ I, f(x ∧ y) = f(x) ∧ f(y) = a, so x ∧ y ∈ I. As x /∈ I, we conclude that x ∧ y = y. So
I is indeed an ideal.

On the other hand, let I be an ideal. Let E = (D \ I) ∪ {a}. Let us define the following directed set
structure on E: ∀x, y ∈ E, if x, y ∈ E \ {a} = D \ I, then x ∧ y is the same as in D. If one of x, y is a,
say y = a, then x ∧ a = x if x ∧ v = x ∀v ∈ I, and x ∧ a = a if x ∧ v = v ∀v ∈ I. Then define the map
f : D → E such that f(x) = x if x ∈ D \ I, f(x) = a if x ∈ I. It is easy to see that this is a homomorphism,
and I = f−1(a) is a fiber.
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So the above Proposition points out that when we have an ideal, i.e. a cluster of points behaving the
same way, then we can collapse them to one point. The result will be a surjective homomorphism from the
original directed set to the one after the collapsing. And indeed all surjective homomorphisms arise this way,
so I also call such a map a collapsing directly.

Now we shall see some basic properties of ideals.

Lemma 2.8. Let A be any index set, and {Ia}a∈A be a collection of ideals. Suppose ∩a∈AIa 6= ∅, then both
∩a∈AIa and ∪a∈AIa are ideals. The whole set and ∅ are vacuously ideals.

Proof. Exercise.

Definition 2.9. A proper ideal is called maximal if there are no proper ideals containing it other than itself.

Proposition 2.10. Every ideal is contained in a maximal ideal.

Proof. With the lemme above, this is just a routine application of the Zorn’s Lemma.

Proposition 2.11. If two distinct maximal ideals in a directed set D have non-empty inersection, then D
has more than one cycle components, i.e. D is not cycle-connected.

Proof. Let the two ideals be A,B. As A ∩ B 6= ∅, A ∪ B is an ideal strictly containing than A. But then
as A is maximal, A ∪ B = D. Now pick some a ∈ A \ B, b ∈ B \ A, WLOG let a → b. Then as B is an
ideal, a → y ∀y ∈ B, and in particular ∀y ∈ B \ A. Then as A is an ideal, x → y ∀x ∈ A, y ∈ B \ A. So
∀y ∈ B \A, if y → z, then z /∈ A, i.e. z ∈ B \A. So there will never be a path from b to a, not to mention a
cycle containing a, b.

Corollary 2.12 (Second Partition Theorem). In a cycle-connected directed set, maxial ideals are disjoint.

Definition 2.13. A directed set where all maximal ideal are singletons is called simple. Then the empty
directed set and the trivial directed set are not simple. The easiest simple directed set is the two-element
directed set.

Corollary 2.14 (Structure Theorem). For any directed set D, there exists a unique simple directed set P
such that a surjective homomorphism from D to P exists.

Proof. For cycle connected ones, collapsing each maximal ideal to a point, we obtain the simple directed set
P . For other ones, the unique simple directed set is the two-element directed set.

This structure theorem gives us a description about how each directed set is built. We start from a simple
directed set. Then we replace one point of it with another simple directed set. Then we replace a point of the
result with yet another simple directed set. Keep doing this, we will eventually build the original directed
set. So if we can figure out all simple directed sets, then we can figure out all directed sets.

Proposition 2.15. ∀ positive integer n 6= 1 or 4, there exists a simple directed set with n elements. There
exists a infinite simple directed set.

Proof. For odd n, let D = {a1, ..., an} such that ai → aj iff |j − i| < n
2 , where |j − i| is how many times i

needs to increase by one in order to be j in the Z/nZ sense. Then this is the desired simple directed set.
For even n ≥ 6, let n = 2k, and letD = {a1, ..., ak, b1, ..., bk}. Let (a1, ..., ak), (bk, ..., b1) and (a1, b1, ..., ak, bk)

be cycles. Then this is the desired simple directed set.
On a circle of radius 1 on the plain, let D = {(cosθ, sinθ) : θ ∈ Q}. Note that this means θ is never a

rational multiple of π excepte θ = 0. Let all arrows be oriented counterclockwise, then this is the desired
simple directed set. Note that this is a

The above proposition illustrates that the simple directed sets are still pretty complicated. This is how
far I went for the combinatorial aspect of directed sets
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3 Directed Space

Recall that in a directed set (D,∧), the wedge can be seen as a map ∧ : D ×D → D.

Definition 3.1. Let D be a topological space. Then (D,∧) is a directed space if the map ∧ is continuous.

This seems to be a good definition. However, all such space is doomed to be super ugly, as addressed by
the following theorem.

Theorem 3.2. Let (D,∧) be a directed space which is path-connected and Hausdorff. Then the vague order
on it is a total order.

Proof. We shall proceed by the following claims.
Claim 1: In any Hausdorff directed space (D,∧), if x→ y, then ∃ disjoint open sets U 3 x, and V 3 y

such that ∧(U × V ) ⊂ V .
Proof of Claim 1: As the space is Hausdorff, let W be a open nbhd of y disjoint from an open nbhd M of

x. Then as the map ∧ is continuous, ∃ open sets U ′ 3 x, V ′ 3 y such that ∧(U ′×V ′) ⊂W . Then x∧ a ∈W
∀a ∈ V ′. But as x /∈ W , we see that x ∧ a = a ∀a ∈ V ′ and V ′ ⊂ W . Let U = U ′ ∩M , V = V ′, then the
rest follows trivially.

Claim 2: All path-connected subspaces of Hausdorff directed space are ideals.
Proof of Claim 2: Let T be a path-connected subspace. Suppose there are some x ∈ T and y /∈ T such

that x → y. Now ∀z ∈ T , ∃γ a path from x to z. ∀p ∈ γ, ∃Up open nbhd of p such that all points in Up
behave the same way with respect to y. Then {Up}p∈γ is an open cover of γ, which is compact. So there is a
finite subcover {Ui}i∈{1,2,...,n} where U1 = Ux, Un = Uz. Now as γ is connected, U1 intersects some other Ui,
say U2. Then with respect to y, U1 behaves the same as U1 ∩ U2, which behaves the same as U2. So points
in U1 ∪U2 behaves the same with respect to y. Now again use connectivity, U1 ∪U2 intersect some other Ui,
say U3. Then by a similar argument points in U1 ∪U2 ∪U3 behave the same with respect to y. Keep going,
then after finite time we see that the whole γ behave the same with respect to y. So x→ y implies z → y.

Claim 3: In a Hausdorff directed space (D,∧), ff D \ {x} is path-connected for some x, then x is either
terminal or initial, i.e. either x← y ∀y, or x→ y ∀y.

Proof of Claim 3: Collapse the ideal D \ {x} to a point, then the claim becomes trivial.
Claim 4: For path-connected Hausdorff directed space (D,∧), D\{x} has at most two path components.
Proof of Claim 4: Let T, T ′, T ′′ be any distinct three of these components, and collapse them to points

t, t′, t′′ we obtain the space D′. Then D′ \ {t} is path-connected as x is in it to connect other components
and t′, t′′ as well. So t is initial or terminal. Then so does t′ and t′′. But then there can only be one initial
and one terminal, contradiction.

Proof of the Theorem: we only need to show transitivity of ”→”. Suppose a→ b, and b→ c in D. Then
b is neither terminal nor initial. So D \ {b} has two path-connected components. If we collapse them to x, y,
then one is initial and the other one is terminal as in Claim 4. Say x is initial and y is terminal. Then a is
in the ideal collapsing to x, and c is in the ideal collapsing to y, and clearly a→ c as x→ y.

4 Chicken King Theorems

Theorem 4.1 (Landau). In any finite directed set (tournament) D, there is an element k (the King) such
that ∀x ∈ D, either k → x or k → y, y → x for some y.

Proof. This is a simple proof by induction. Soppose the statement is true for tournament on n vertices. For
tournament on n+ 1 vertices, we throw away an arbitrary vertex, call it vn+1, then the rest is a tournament
on n vertices, and therefore has a king k. If k → vn+1 as well, or k → y, y → vn+1 for some y, then k is
also a king for D. Otherwise, then ∀x ∈ D, if x = k, then vn+1 → x. If k → x, then as we cannot have
x → vn+1, we must have vn+1 → x. If x → k, then ∃y such that k → y and y → x. But then vn+1 → y by
last case, so vn+1 → y and y → x. To sum up, vn+1 is the king.

Theorem 4.2 (Nagao, Shakhmatov [1]). Every non-empty compact Hausdorff directed space X has a king.
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Proof. Define Kx = {z ∈ X : z → y → x for some y ∈ X}. Then we only need to show that ∩x∈XKx

is non-empty. We are going to show that each Kx is closed, and this collection has the finite intersection
property, and then by compactness we are done.

We know ”→” is a relation on X, so it can also be seen as a subset of X ×X. Let’s denote this subset
G. ∀(a, b) /∈ G, then b → a. Then as we have shown in the last theorem, ∃ disjoint open sets U 3 a, V 3 b
such that V ∧ U ⊂ U . So U × V ⊂ X \G. So G is closed.

Then G × X and X × G are closed subsets of X3. Take their intersection, we have a closed subset
T = (a, b, c) : a→ b→ c. We know X×X×{x} is also closed for any x ∈ X. So we can define closed subset
Qx = T ∩ (X ×X × {x}). Let π be the projection onto the first coordinate, then clearly π(Qx) = Kx. Now
as Qx is closed in a compact space X3, it is compact. Then Kx = π(Qx) is compact in a Hausdorff space
X, so it is closed.

The finite intersection property of the family {Kx}x∈X follows from the original Chicken King Theorem.
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